Crash Course in Machining – Machine Spindles

Crash Course in Machining – Machine Spindles

The machine tool spindle provides the relative motion between the cutting tool and the workpiece which is necessary to perform a material removal operation. In turning, it is the physical link between the machine tool structure and the workpiece, while in processes like milling, drilling or grinding, it links the structure and the cutting tool. Therefore, the characteristics of the spindle, such as power, speed, stiffness, bearings, drive methods or thermal properties, amongst others, have a huge impact on machine tool performance and the quality of the end product.

Spindle warm-up

In order to avoid heat problems and increase the spindle service life, it is necessary to know about the heat sources to reduce their contribution. The main sources of heat that affect the spindle are the motors, the friction in bearings and the cutting process.

Keeping a stable spindle temperature is more important than simply reducing the temperature. The idea of a warm-up is to achieve a stable operation temperature during the entire machining process in order to reduce the effects of thermal expansion caused by temperature variations. The warm-up cycle should be carried out in conditions similar to the operating conditions, with the same cutting tools, if possible. Nowadays, many machine tools have automatic spindle start-up and warm-up systems that bring the machine to the correct temperature ready for the operator to begin work as required.

Spindle runout

The term “runout” in machining describes the state of a spindle and tool when they have a rotational axis that differs from their geometrical axis. The total indicated runout, TIR, is the total distance measured from the maximum position in radial direction to the minimum position in the same direction. This factor limits productivity, as it negatively affects the dynamic balance, the chip load distribution, the part finish and the tool life. The runout can refer to the spindle or to the tool.

Eccentricities in the nose of the spindle can arise for various reasons, such as defective elements of the spindle, inaccuracies in the assembly, slack or simply the ageing of the spindle, among other possibilities. Although radial and axial runouts are measured at the nose of spindles, it is the radial runout that is the most significant.

Cutting tool runout is usually measured as a composition of radial and angular runout, and is produced by inaccuracies in the mounting operation. The result is that one tooth supports larger chip loads than the others. This error is due to deficiencies in the tool-collet adjustment, the degree of collet wear, or small impurities of chips or coolant that may have been left on the collet that render the grip of the cutting tool imprecise or less rigid.

Runout can be measured while the spindle is in operation (dynamic measurement) or at rest, using static tests. Dynamic measurement provides more reliable and precise results, although the instruments required are more expensive.

Checking spindle runout using static tests: (1) at the taper and (2) on a precision test bar

At CNC Proto we offer state-of-the-art Multi-Axis Turning and Milling machining services that produce outstanding quality parts to the tolerances you specify. Try us now by following the link and get a quote for your parts in 24h!

Fernando Duarte Ramos

With an MSc. in Mechanical Engineering, Fernando has worked 8 years at CERN designing the next generation of particle detectors alongside top European engineers and physicists. Being passionate about CNC machining, he started CNC Proto, an online CNC machining service in Europe dedicated to providing fast turnaround, high quality parts at a competitive cost.
Close Menu